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Abstract

The two-dimensional mixed boundary-value problems for an anisotropic thermoelastic body containing an elliptic
hole boundary are considered in this paper. By using the formalism of Stroh [Phil. Mag. 7, 625-646], the approach of
analytic function continuation and the technique of conformal mapping, a unified analytical solution for elliptic hole
boundaries and for general anisotropic thermoelastic media is provided. As an application, two typical examples as-
sociated with mixed boundary-value problems are solved completely. One is an indentation problem over an elliptic
hole boundary, the other is a partially reinforced elliptic hole under a remote uniform heat flow. Both the contact stress
under the rigid stamp and the bonded stress along the reinforced segment are studied in detail and shown in graphic
form. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In formulating the mixed boundary-value problems in continuum mechanics, the boundary conditions
usually consist of two types. One is the potential type such as temperature, velocity potential, electrostatic
potential and displacement; the other is the flux type such as heat flux, velocity, electrostatic charge and
stress. Accordingly, for elasticity problems in solid mechanics, one may classify the displacements and the
stresses as respectively the potential and flux type quantities. The physical of the problem requires the
potential quantities be bounded but allows the flux quantities to be unbounded which may be named as flux
singularity. If the type of boundary conditions changes at a discontinuous point of the boundary, the re-
sulting strength of singularity at this point will be significantly enhanced due to the presence of both
geometric and flux singularities. This is the reason why the mixed boundary-value problems are more
difficult to solve than the ordinary boundary-value problems such as the traction- and displacement-
boundary-value problems.
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Mixed boundary-value problems in two-dimensional elasticity such as punch problems and interface
crack problems have been solved and collected by Muskhelishvili (1953) and England (1971) for isotropic
materials. In solving mixed boundary-value problems the analytical function approach is found to be a
simpler and powerful procedure. As to anisotropic materials, the interface crack problems were investigated
by Ting (1986), Qu and Bassani (1989), Suo (1990), and Gao et al. (1992); and the punch problems for an
elastic half-plane were solved by Fan and Keer (1994) and Fan and Hwu (1996). Among them, the Stroh
formalism (Stroh, 1958) and the analytic function approach have been utilized and found to be the most
appropriate for solving mixed boundary-value problem of two-dimensional anisotropic elasticity. Through
these methods, many exact closed-form solutions have been obtained for the elasticity problems with
simpler geometry such as straight boundaries. Most of important practical applications of elasticity theory
are concerned with solids which have curvilinear boundaries. However, due to the mathematical infeasi-
bility, the corresponding problems associated with curvilinear boundaries have received less attention in the
literature. Recently, a general solution for the problems of rigid stamp indentation on a curvilinear hole
boundary of an anisotropic elastic body was given by Fan and Hwu (1998). To solve the problems with
curvilinear boundaries, a one-to-one mapping needs to transform an awkwardly shaped region to a simple
one. However, there are certain cases that a one-to-one mapping function cannot be found. For example,
there is no exact closed-form solution for the generally anisotropic plate containing a polygonal hole for
which the mapping function is not single-valued. This is due to the difficulty of finding the mapping
functions so that the three image points associated with three different eigenvalues for anisotropic elasticity
on the unit circle in the transformed domain are always coincident. The only exception occurs when the
hole boundary is an ellipse in which the mapping functions can be given explicitly so that any point on
the hole boundary under three different mappings is mapped onto a single point on the unit circle in the
transformed domain.

In this paper, we like to deal with the mixed boundary-value problems of two-dimensional aniso-
tropic thermoelasticity with elliptic boundaries. Based on the Stroh formalism (Stroh, 1958), the method
of analytical continuation, and the technique of conformal mapping, a unified analytical solution for ellip-
tic hole boundaries and for general anisotropic thermoelastic media is provided. A typical example of
an elliptic hole boundary indented by a rigid stamp is solved in detail where the exact closed-form solu-
tions are obtained and the correctness of the present results is checked analytically by their reduced
forms such as those for the corresponding isothermal problems (Fan and Hwu, 1998) and those for the
stress boundary value problems (Chao and Shen, 1998). The problem with a partially reinforced ellip-
tic hole under a remote uniform heat flow is also solved completely and the correctness of the results is
checked analytically as compared to the results for the stress boundary value problems (Chao and Shen,
1998).

2. Basic equations for plane thermoelasticity
With respect to a fixed rectangular coordinate system x;, i = 1, 2, 3, let u;, 6y, &, T, h; be, respectively, the
displacement, stress, strain, temperature, and heat flux. For the uncoupled steady-state thermoelastic
problems, the heat conduction, energy equation, strain displacement relation, constitutive law, and the
equations of equilibrium consist of (Nowacki, 1962)
h,‘ - —kijT,j (21)
hiy = —kyT; =0 (2.2)

& = 5t + ;) (2.3)
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0ij = CijksUk,s — ﬁijT (2-4)

Oijj = CijksUk,sj — ﬁijT,j =0 (2.5)

in which repeated indices imply summation, a comma stands for partial differentiation, and Ciy,, k;;, f;; are
the elastic constants, heat conduction coefficients, and thermal moduli, respectively. For two-dimensional
problems, the temperature 7 and the displacement u; are independent of x;. The general solution to Eq.
(2.2), which is similar in form to that for antiplane deformation in anisotropic materials, can be expressed
as

T =2Relg'(z.)], z.=x1+1x0, (2.6)

where g is an arbitrary function and the prime stands for differentiation with respect to its argument; Re
denotes the real part of a complex function; the heat eigenvalue 7 is the solution of

kzz‘[z + (k12 + kgl)‘f + k11 =0 (27)

Here, the assumption of positive definiteness of the heat conduction coefficients has been adopted such that
the heat eigenvalue 7 cannot be a real number in Eq. (2.7).

Once the temperature function g’(z,) is determined, the general expressions for the displacement and
stress functions can be expressed as (Ting, 1996)

u; = 2Re{dify(z,) + cig(z.)} (2.8)
§, = 2Re{Bifi(z.) + dig(z.)} (2.9)
Z, =X +pxy, a=123 (2.10)
A={a a2}, B={b,bybs} (2.11)

Hereafter, bold symbols represent vectors or matrices. f is an arbitrary function, the elastic eigenvectors
{a,b} and the elastic eigenvalue p can be determined from the following eigenvalue problem

N; N a
N¢ = pe, N:[N; Nl%] é:M (2.12)

where
N, =-T'R", N,=T'=N], N;3=RT'R"-Q=NI
Oik = Ciurt, Ry = Cir, Ty = Cipa,

the superscript T stands for the transpose of a matrix; while the vectors {c, d} satisfy the following equation

Ny = —7, v{(; };ﬂ{ﬁ;} n{;} (2.13)

where f, = {f,}, B> = {Pp} and I is the identity matrix. The vector ¢ given by Eq. (2.9) is the stress
function which is related to the surface traction t by

_%
~ Os
where s is the arc length measured along the curved boundary and the material is located on the right-hand

side along the increasing path. Note that the general solutions in Egs. (2.8) and (2.9) are for a state of plane
strain and valid only when p; # p, # p; # 7. However, for the special case in which the heat eigenvalue t

t (2.14)
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becomes equal to a single or double elasticity eigenvalue, p,, the solutions can still be derived by making use
of the following identities

S=i2AB" —1I), H=2iAA", L= -2iBB", j=—Lc+S"d-id, (2.15)

where the real matrices S, H, L and vector y can be determined from ¢ and f,, 8, (Barnett and Lothe, 1973;
Hwu, 1990).

3. Derivations of the general solution for curvilinear hole boundaries

Consider the thermoelastic problem of an anisotropic body containing an elliptic hole in which the
displacement and the temperature are specified over a region L of the hole boundary while the remainder of
the hole boundary L' is assumed to be traction-free and insulated from heat flow (see Fig. 1). These
boundary conditions characterize the mixed boundary-value problems which would produce stress sin-
gularity at the tips of the region L as stated in the first section. In order to solve the problem with an
awkwardly shaped region, a transformation z, = m,({,) is introduced in the present problem which maps
the points of a region S; with a circular hole boundary in the {-plane onto the points of a region S, with a
curvilinear hole boundary in the z-plane. With this mapping function, all the solutions given in the last
section are expressed in terms of the complex variable { instead of z. For the later use of derivation, a
compact matrix form solution which satisfies all the basic equations given in Egs. (2.1)—(2.5) is written as

T =2Relg/({)] (3.1)

0= [ (hhdvs e = 2Relikg ()] (3.2)

u = 2Re[Af(() + eg(0)] (3.3)

¢ = 2Re[Bf(() + dg(0)] (3.4)
with

() = [0, /A0, AQ] (3.5)

where k = (kyjkn — klzz)l/2 and the argument has the generic form { = x; + p (or 1)x,.

X

R+

X

Fig. 1. An elliptic hole with mixed boundary conditions.
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Once the solution of f({) (or g({)) is obtained for a boundary value problem, a replacement of
(1,05, (or ;) should be made for each component function to calculate field quantities (Suo, 1990). On
transforming to the region |{| = 1 of the {-plane, the boundary conditions can then be expressed as

T,(0) =0, u,=1w(o) o€l (3.6)
hy=t,=0, o¢L (3.7)
where o = €' denotes the point on the unit circle of the {-plane; L is the union of n arcs Ly = (a, b;),
k=1,2,...,n, W(o) is the given function of the displacement gradient along the tangent direction n;

h,, and t,, are the heat flux and the traction function, respectively along the normal direction m; nT =
(cosd, sinf,0), m" = (—sin6, cosh,0); and 6 is the angle measured counterclockwise between the tangent
vector n and the positive x;-axis (Fig. 1).

3.1. The thermal field
We first consider the thermal problem with the unknown function g({) which satisfies the boundary

conditions (3.6) and (3.7). To solve this function the temperature gradient 4,, is expressed in terms of g”({)
as

o0 or7. , e Taa
I = = - [ike' () — ik (0]
d .. 0 O [0z, Ox; Oz Oxy drpr. ——700 0y [0z, dx, OZ, Ox,
= 72 ! =~ - e — = k d ~ ~— ~ ~ +
d:[ 40 o 2z, {@cl on ' ox 6n} 4 [l g (5)} oy o on T on] - °
(3.8)
where
6x1 6x2 . aé . 621 aZT axl
an cos®, an sin 6, oy i, o ' T, o0 cos
> > (3.9)
B pg, M1 | |
ooy © 2z pleosO+esing)’ P\ oy o
On substituting Eq. (3.9) into Eq. (3.8) we find
k¢ k
by =—=2"({) +—¢"((), (—a" 3.10
O+ (3.10)
or
ke , . k(1

where the superscript + (or —) denotes the boundary point is approached from the region S* (or S7).
Using the properties of holomorphic functions and applying the method of analytical continuation
(England, 1971), we may introduce 6y({) in the form

Lg1(0), Cest
Tl () tes

S

(3.12)

With the definition of Eq. (3.12), Eq. (3.11) can be rewritten as
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hy = 00(c") — 0o(a7) (3.13)
In a similar way, the temperature gradient in the direction of n can be obtained as

a7 i N -

a—%wo(a )+ 0o(c7)] (3.14)

Substituting the boundary conditions (3.6) and (3.7) into Eqgs. (3.13) and (3.14), we obtain the following
Hilbert problem

60(0'+)+00(O'7) :07 g€l (315)

Oo(6") —0o(67) =0, o&lL (3.16)
The solution can be easily found as

00 (&) = Xo(O)po(0) (3.17)

where py({) is a polynomial function and X({) is the basic Plemelj function defined as

n

Xo(Q) = [J€—a) (b (3.18)

J=1
The determination of py({) may be found from the behavior of the temperature function at infinity and
origin which has the form for large |z| as (Chao and Shen, 1998)

ho

glz) = 2Zf-l—roleong—&-lolong-i-O(l) (3.19)

where /g is related to the uniform heat flux applied at infinity defined as (Chao and Shen, 1998)

qo(€Os ) + Tsiny)
hy = T —7) (3.20)
with ¢y being the magnitude of heat flux and 7y, the angle measured from the direction of heat flux with
respect to the positive x;-axis; the constant ry in Eq. (3.19) can be found from the condition of the resultant
heat flow O applied at the entire body as well as the condition that the temperature field is required to be
single-valued.
These conditions are expressed as

[0(0)], = 2Relikg' ()], = O, (3.21)
[T(0)], = 2Re[¢ ()], =0 (3.22)

where [g({)], denotes the jump of a complex function g({) when enclosing any contour c.
Substituting Eq. (3.19) into Eqgs. (3.21) and (3.22) and solving for ry, we have

9
Atk

The remaining unknown constant /; in Eq. (3.19) will be determined once the geometry of a curvilinear hole
is given.

With the transformation z, = m.({) and the definition of Eq. (3.12), the infinity and origin conditions for
60({) can be found by using Eq. (3.19) as

ro =

(3.23)

k
Ko

0(0) =~ 3 R T
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and
7 Iy

_ _ /1
h0+m_f(1/C)(m_f(l/C))2]mT<z)+O(C)’ =0 (3:29)

—k 1 —k
0 =—g'|=)=—
0 =2re(3) =2
3.2. The stress field
Having the temperature function, we now intend to find the stress function f({) in Eqgs. (3.3) and (3.4)

which satisfies the boundary conditions (3.6) and (3.7). In a way similar to the previous approach, the
surface traction t,, along the hole boundary can be expressed as

=22 = 2 [Br(0) + BI(D) + ag(0) + A2(0)|
_IC / / 1res— = / +
=7[Bf (©) +dg'(0)] +z [Bf(C)erg(C)} (=0 (3.26)

where we have used the relations (3.9) by the replacement of z, and 7 with z, and p,, respectively. Eq. (3.26)

can then be rewritten as
-, (1 - 1
3] 3]

Now we introduce a new holomorphic function as
, {[Bf'({) +dg'(0)], {es’
©= { [BE(1/D) +dg(1/D)], tes
With the definition of Eq. (3.28), Eq. (3.26) can be replaced by
O'(c") —0'(c7) = ipt, (3.29)

Similarly, the displacement gradients along the tangent direction n of the hole boundary can be obtained as

—ig i
t, = — |Bf (¢*) +dg'(c" —
7 [Bren) ragen] 4

(3.28)

Q'(c") + MMA(E)’(J’) —2MIm|[(c — AB 'd)og'(¢")] = —pMu,, (3.30)

where M = —iBA ' is the impedance matrix; Im denotes the imaginary part of a complex function. Using
the boundary conditions (3.6) and (3.7), we obtain the following Hilbert problem from Egs. (3.29) and
(3.30) as

@)+ MM '@(c ) = M{ — pil + 2Im|[(c — AB™'d)og'(c")] } cel (3.31)
Q") -0 (c7)=0, oL (3.32)
The general solution to this Hilbert problem is
, 1 1 . , i
O/(0) = 5 X(0) [ X (0] "M{ = pif + 21m (e~ AB' g ()] b dr + X(Op(0) (3.33)

where p({) is a polynomial with an appropriate singularity at infinity and origin; X({) is the basic Plemel;
function defined as

X(() = Ar(() (3.34)

where
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A= [, o, 2], r<c>=<<ﬁ<c—a,> Lo (¢ — by >> (3.35)

J=1

The angular brackets (( )) stands for the diagonal matrix in which each component is varied according to
the Greek index o; d, and 4,, & = 1,2, 3 are the eigenvalues and eigenvectors of (Fan and Hwu, 1996)

(M" + eZ“i‘sM’l)i —0 (3.36)

In order to find the arbitrary polynomial vector p({), we consider the complex function vector f(z) which
has the form for large |{| as

f(z) = ((z))q + ((log z,))r + ((H(z))) + O(1) (3.37)
where q is related to the stresses o7 and strains ¢ at infinity as (Eshelby et al., 1953; Ting, 1988)
q=A"t® + BT (3.38)

with

o1 &l
=< 0% 7, =4 &5 (3.39)
o35 263

The complex constant r is related to the resultant force p applied on the entire body and the complex
function H(z,) will be determined to counterbalance the singular term ryz. log z, of the temperature function
given in Eq. (3.19). For convenience of the calculation, the complex function H(z,) is chosen as the form
h({)log{ and using the transformation z, = m,((), the stress function f({) in Eq. (3.37) becomes

f(0) = ((m.(0)))q + ((log (m,(0))))r + ((log{))h({) + O(1) (3.40)

In order to determine the unknown constant r and unknown function h({) in Eq. (3.40), the condition of
single-valued displacements and the condition of the resultant force p applied over the entire body must be
satisfied to yield

[Af(é) +Af(0) +cg(0) +E@} =0 (3.41)

C

[BR(0) + BI(D) + dg() +dg(0)] = b (3.42)

By direct substitution of Egs. (3.19) and (3.40) into Eqgs. (3.41) and (3.42), we may immediately have the
following equations

Ar—Ar+clp—¢ly=0

p
Br—Br—&-i—dlo—% (3.43)
Ah(() — Ah(0) + erom.(() — €rm.(0) =0
Bh({) — Bh(0) + drom.({) — drgm.({) = 0
Solving for r and h({) in Eq. (3.43), we obtain
- ZLATA T(dly — dTy) — BT (cly — &) (3.44)

and
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h(0) = —(B"c + ATd)rom.({) + (BTc + ATd)rom.(0) (3.45)

With the definition of Eq. (3.28), the infinity and origin conditions for @'({) can be obtained by using Egs.
(3.19) and (3.40) as

() = B{<<¢m;(o>>q + << f:’(%’ >>r + {(Clog )W (D) + h(z)} + d[homm + rlog(m:(0))

£t [ +0( ). i (3.46)
and
wo-s{ ()t ()W) )

_[— 1 1 ly 1—/1
+d|hym; | - | +70lo (m_r()>+r_+_}m;()+0 , -0 3.47
() +ritoe (e 3 ) ) + 4 it | (3 ) + 00, (347)
Thus far we have completed the derivations of the general solution; the only unknown functions py({) in
Eq. (3.17) and p({) in Eq. (3.33) will be obtained with the help of Egs. (3.24)-(3.47).

4. Rigid stamp indentation on an elliptic hole boundary

Although the solutions presented in the last section are derived for any curvilinear boundary, the exact
closed-form solutions can only be obtained when the transformation functions are single-valued. A typical
geometry of curvilinear boundaries is the one with elliptic boundaries whose transformation function

ze=m(() =H(a—ibt){, + (a +ibr)( '} (4.1)
or
2, = my((,) = H(a — ibp)C, + (a +ibp) ('} (4.2)

is found to be single-valued when the points outside the elliptic hole with the major length 2a and the minor
length 2b of the z-plane are designated to map onto the points outside the unit circle of the {-plane. Suppose
that the hole is subjected to a resultant heat flow O approached from the negative x;-axis and is loaded by a
rigid stamp with a resultant force p along the segment between (acos ¢, —bsin¢) and (acos @, bsin ¢) which
is mapped onto an arc L = (e7'*,e'¢) in the {-plane. With this specification, the general solution given in Eq.
(3.17) becomes

90(() :XO(C)I?O(C) (4-3)
where
XO(C) _ (C_efiq))*l/Z(é,_eiq))*l/Z (44)

and the polynomial py({) is determined from the infinity and origin conditions of the temperature function.
By direct substitution of Eq. (4.1) into Eqgs. (3.24) and (3.25) and knowing that 4y = 0 in the present
problem, we have

00 =5ro+0( 7). 16— oc (45)
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and
k
00(0) = =5 +0(0), =0 (4.6)

where ry is given by Eq. (3.23).
Moreover, Xp({) given in Eq. (4.4) has the form for large |{| as

1 cosg ( 1 )
X () ==+ +0( = 4.7
O(C) C CZ C3 ( )
and for small |{| as
Xo(0) = —1 = Lcosp +O(L%) (4.8)
Using the properties given in Egs. (4.5)—(4.8), Eq. (4.3) yields to find the polynomial py({) as
kr
m(©) =21+ (49)
Substituting Eq. (4.9) into Eq. (4.3) and applying Eq. (3.12), we find
kC kro(1 4
00 =g = Fll Y (4.10)
P py/({—e)({—€)
and the temperature function g’'({) can be determined by integrating Eq. (4.10) with respect to { as
ren .1 ¢—cosp il 1 — cose
409 —ro{smh <7sin(p ) sinh <7Csin(p )} (4.11)

In the present problem we assume @' (o) = 0 which implies the profile of the stamp is compatible with
that of the hole boundary. With this condition and the obtained temperature function (4.11), the general
solution given in Eq. (3.33) becomes

@/(C)_QX(C)/LL[XJr(t)]—lMIm{(c—AB_ld)t{sinh1(&)

R t—{ sin

— sinh™! <1_C°S"’)] (alr _‘”f)}dHX(c)p(z) (4.12)

tsin ¢ 2
where a,, = (a — ib1)/2, ar, = (a + ib7) /2, and X({) is defined as
X(8) = AP(0) = AL (0~ &) (g = oy 0250y g, =145, (4.13)

To obtain the polynomial vector p({), the properties of the stress function @'({) at infinity and origin
must be used. By direct substitution of Eq. (4.1) into Egs. (3.46) and (3.47), we find

00 =B{r+5 (- pna+o(;)f. K- (4.14)
and

, —(_ 1 o

®<c>=B{r+zé<<a+1bpa>>q+o<c>}, =0 (4.15)

Notice that the unwelcomed singular term {log{, which has been cancelled out by the proper choice of the
function %({) defined in Eq. (3.45), does not appear in Eqgs. (4.14) and (4.15).
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In addition, T'({) given in Eq. (4.13) can be expanded for large || as

1 G G, G;
ro= C+c_+§_+c4+o(c) (4.16)
and for small |{| as
L) = ((—e ) {1+ Gul + G5 + G’} + O(L) (4.17)
where

G, = ((cos ¢ + 2¢,sin @)),

= (31 +4€)(1 — cos2¢) + cos2¢ + 2¢,sin2¢)),

. 15 9, 3 3, 1, .
< {(—4—? >81s1n3(p+ <8—281) cos3<p} + <8+28“> cosp — (4+81>¢“Sln(p>>,

Gy = ((cosp — 2¢,sin @),

Gs = ((}(1+4¢2) (1 — cos2¢) + cos2¢p — 2¢,sin2¢)),

Go = = —3—8 &,sin3¢ + E——s cos3p| + é—i—ész cos¢ + 1—}—82 &, SN
¢ 3 4 * g8 2* 8§ 2+ 4 )
(4.18)

Using the properties given in Eqs. (4.14)—(4.17), Eq. (4.12) yields to determine the polynomial vector p({) as
p(O) =&’ +el+e+e 7 (4.19)

where the constant coefficients e_|, e, e, e, satisfy the following relation (see Appendix A)

2Ae;, = B<<a - 1bpa>>q7

Ae; + A(((A—ie,)e” + (L +ie,)e ) )es = Br,  A((e>))e_; = —1B((a + ibp,))q,
A{{(e72) e + ({77 [(3 + )€ + (5 —iex)e ] ) )e1} = —Br
Solving Eq. (4.20) for the four unknowns e_j, ey, ;, €, the problem is completely solved.
Since the solutions obtained in this paper are new and no other analytical solution is available in the
literature, the correctness of the present results can only be checked analytically by their reduced forms such
as those for the corresponding isothermal problems and those for stress boundary value problems. We first
consider a special case that an anisotropic body containing an elliptic hole is subjected to a resultant force p
applied on the rigid stamp. In this case ¢ = 0 and the unknown constant coefficients given in Eq. (4.20)
become

e =0, e=—{((€)A'Br, e, =A"Br, e,=0 (4.21)

where r = (1/2ni)A"p as found from Eq. (3.44).
By combining Egs. (3.28), (4.12), (4.19) and (4.21), the final expression of f'({) is obtained as

£(0) = %MB"AF(C) [AlBAT + << ezgu >>A1§KT]13 (4.22)

which is identical to that provided by Fan and Hwu (1998).

(4.20)




5986 C.-K. Chao, B. Gao | International Journal of Solids and Structures 38 (2001) 5975-5994

Next we consider an anisotropic body containing an elliptic hole which is subjected to a remote uniform
heat flow with an angle y, measured from the positive x;-axis. If the whole boundary of the elliptic hole is
traction-free and insulated, the displacement-prescribed and temperature-prescribed segment L will vanish,
and the present mixed boundary-value problem reduces to a stress boundary-value problem. In such a
problem, the Plemelj functions X,({) in Eq. (3.18) becomes a unity and the solution will be reduced to a
polynomial form

00(8) = po({) (4.23)

where py({) can be determined from the infinity and origin conditions of the temperature function. Sub-
stituting Eq. (4.1) into Eqgs. (3.24) and (3.25) with knowing that ry = 0, we have

kC 1y 1 k 1
0 =—|hg———— |m O| - ) =—aih Ol - 4.24
0= l ’ <mf<c>>2]’”f“>+ (z) =pame+o(z) @2
for large |{| and
—k |— Iy (1 —k_ —1
0 =— |hy———— |m’| - =—1ua1h-+0 4.25
0(0) =2 | (m_r(l/g)f]mf(c) +0(() =@l +O(Y) (4.25)
for small |{].
By combining Egs. (4.24) and (4.25), we may obtain the following result
00(6) =2 (6) = [enl — il (4.26)

where a temperature function g({) can then be determined by integrating Eq. (4.26) twice with respect to
( and z, as

g(0) = hoad O + (ara@rhy — areascho) log{ + Shoarzar (4.27)
and comparing Eq. (4.27) with Eq. (3.19), the constant /, can be found as
lo = arcaichy — aizaz:ho (4.28)

Since the entire boundary of the elliptic hole is traction-free, the solution given in Eq. (3.33) reduces to

') =p() (4.29)

Substituting Eqs. (4.1) and (4.2) into Eqs. (3.46) and (3.47) with knowing that q = 0 and h({) = 0, the
properties of @'({) at infinity and origin, respectively are found as

O () =Br+dl, +0(("), [{ — oo (4.30)
and
O'(0) =B +dl, +0(0), || —0 (431)

where r = —A"(dl, — d1y) — B (¢l — ¢lp).

Notice that during the derivation of Eqs. (4.30) and (4.31) the complex functions dhom.({) and
ah_omﬁ(l /¢) associated with the solutions of the homogeneous problem due to a uniform heat flow, which
will not produce stress, have been subtracted from Eqs. (3.46) and (3.47), respectively. By combining Egs.
(4.29)(4.31), the final expression for @'({) can be obtained as

O'({) =Br+di, (4.32)

where Br + d/; is a real vector. Moreover, the temperature function can be obtained as
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g(0) = (arcarhy — arashy) logl + L(hoar; — hoazr)azrfz (4.33)

The solution of f({) can then be found by applying the first term of Egs. (3.28) and (4.33) to Eq. (4.32) and
integrating the results with respect to ( as

£(0) = B™'d(hoar. — hoar;)ar{ > +rlogl (4.34)

which is proved to agree with the one obtained earlier by Chao and Shen (1998).

5. A partially reinforced elliptic hole under remote heat flow

In this section, we consider a partially reinforced elliptic hole embedded in an infinite anisotropic me-
dium under a remote uniform heat flow (see Fig. 2). Suppose that the hole is subjected to a uniform heat
flow go with an angle y, measured from the x;-axis and is isolated on the whole boundary including the
reinforced segment between (acos ¢, —bsin¢) and (acos @, bsin¢) which is mapped onto arc L = (e7'?, ')
in the {-plane. We know that the reinforced inclusion produces a rotation under uniform heat flow,
therefore the displacement vector of the reinforced inclusion can be found as (Ting, 1996)

it = ¢"[acos om(0) — bsinn(0)] = ¢'Re[ — ie Y] (5.1)

where y = bn(0) + iam(0) and ¢* is a rotation angle.
The displacement gradient along the tangent direction n of the hole boundary can be obtained as

u,,,:%:%(g—kay) (5.2)

and the temperature function g’({) can be determined by differentiating Eq. (4.33) with respect to ( as
g'(0) = (hoar: — anTz)azf(f3 — (hoar. — ZOGTI)CI11(1 (5.3)

With the results of Egs. (5.2) and (5.3) and the properties of @ at infinity and origin given in Egs. (4.30)
and (4.31), the final expression of the stress function @', similar to the previous case, can be obtained as

Fig. 2. A partially reinforced elliptic hole under a remote uniform heat flow ¢.
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2\¢
- (a - Xﬁ”a) [(hotz: — hoay.) @ — (hoia: — hoalf)a—h]] } +X(Op()

O =—(1+ MMI)IM{ i <X " (y) [ (e~ ABa) [(hoar, — Fogiz)asel * — (hoase — i)

where X({) is given in Eq. (4.13) and the polynomial vector p({) is defined as
p)=el +el +el+e+e " +erl” (5.5)

The constant coefficients in Eq. (5.5) satisfy

e = —iA"! (1+MM*1)‘1M(5 ~AB ) (s — hoa)a

1\ I p*
e = A (I + MM 1) M%y —Gies

-1

e = A—l{asr +dly) —i(1+ MM ') M| (c — AB™'d) (hoa — hoarr)ar. — (€~ AB'd) (huaar

- hOalr)a_lr:| } — Gie; — Gaes

e =i(( =™ )NAT (14 MM ') M(c— AB™'d) (hoas: — hoars)
e = ((~e A (MM ) MLy~ Gies

i\l _
e = (( - ez‘“’>>A‘1{(Br ) — i(I + MM ‘) M[(c — AB™'d) (hoay, — hoar;)ae
_ (E — KEil(_l) (]1_061_2I — hoah)a_h] } — Gue_; — Gse_» (56)
where r = —A"(dly — d1,) — B"(cly — €ly) as found from Eq. (3.44) by letting p = 0.

As for the rotation angle ¢*, we impose the condition that the resultant moment about the x;-axis due to
the traction t,, on the elliptic boundary vanishes, i.e.,

/ [acos em(0) — bsinen(0)]t,pdp =0 (5.7)
L
With the help of Eqgs. (3.29) and (3.9), Eq. (5.7) can be replaced by
/ Loy ) [@/((ﬁ) - @/(a—)} do =0 (5.8)
L 2
and substituting Eq. (5.4) into Eq. (5.8) and applying residue theory, we have a rotation angle as
Y'A((e27))S) —§'AS;

o 5.9
‘ S;+S,4+ S5 (59)

where the constant vectors in Eq. (5.9) are expressed as
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Si =Y, — (G, — G})es + G, Y, — (2G4Gs — G — Gg)e
S; =Y, (Gs — G)e» + G\Y, — (2G,G; — G — G3)e;
Ss = y'A((e”**))GIRy
Ss =¥ A((e*”))G4Ry

yT

<1
Ss = - A(Gs — G)Ry + - A(G: — G))RY — y'ARY

(5.10)

and

-1

Y, = Al{(Br +dlo) ~i(1+ MM ') M| (c ~ AB™'d) (e — hoars)are

- (E_Kﬁila) (h_"“_zf_h‘)“lf)]} (5.11)
Y, = ((—e*))Y,

1 1) !
R=AT(I+MM ') M

Now we have completed the solution for the problem with a partially reinforced elliptic hole under a remote
uniform heat flow. When the reinforced segment is assumed to vanish, the solution given in Eq. (5.4) can be
reduced to the one given in Eq. (4.29) corresponding to an infinite plate with an elliptic hole subjected to a
uniform heat flow at infinity (Chao and Shen, 1998).

6. Illustrative examples

In order to demonstrate the use of the present approach and to understand clearly the physical behavior
of the mixed boundary-value problems, numerical examples associated with an elliptic hole boundary under
indentation and a partially reinforced elliptic hole under a remote uniform heat flow will be discussed in this
section.

6.1. A rigid stamp on an elliptic hole boundary

We first consider that an infinite body containing an elliptic hole with b/a = 0.6 is subjected to a re-
sultant heat flow Q approached from the negative x;-axis and is loaded by a rigid stamp with a resultant
force p = (p,0,0) along the segment ¢ = 30°. The material properties considered in the present study are
chosen as

E11 = 144.8 Gpa7 E22 = E33 =97 Gpa, Vip = Vy3 = Vi3 = 0.3
G =Gy =G;3=41Gpa, k;=462Wm 'K, kp=k;=072Wm 'K (6.1)
ap=—03x 10K, oy =033 =281 x10°K"™!

Based on the material properties listed above, the thermal eigenvalue 7 and elasticity eigenvalues p, can be
determined from Eqgs. (2.7) and (2.12), respectively. The matrices A and I'({) can also be found from Eqgs.
(3.15) and (3.36) as the stamp location is given. It is found that, based on the material properties given in
Eq. (6.1), the eigenvalues 0,(a = 1,2,3) corresponding to Eq. (3.36) are 6, = —0.5 —0.0863i, o, =
—0.5 4 0.0863i, 43 = —0.5 which implies that the stresses would change sign near the ends of the contact
portion. However, the oscillatory zone at such locations is extremely small for the case of a rigid stamp. By
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using the transformation (4.1) and (4.2), the general solution of 6,({) and @'({) can be found from Egs.
(4.10) and (4.12), respectively. Consequently, the function g({) and f({), respectively can be determined
from Egs. (3.12) and (3.28), and the stress function ¢({) is then obtained from Eq. (3.4). The contact stress
a.m under the rigid stamp is related to the stress function ¢({) by

Omm = mT(9)¢,n (6'2)

Notice that during the calculation of contact stress defined in Eq. (6.2), a replacement of {,, {;, {5, {5 has
been made for each function stated above. For the purpose of clearly expressing the effect of material
properties, geometric configuration and applied loading on the contact stress, the nondimensional pa-
rameter A" defined as

/l* . (leEl]QbSiIl(p

- 6.3
kip (6.3)

is used which must be properly chosen such that the condition of a negative (compressive) contact stress
should be satisfied. In general, A" ranges from —oo to oo which describes the indentation problem under
both thermal and mechanical loading conditions. In the present case, the perfect contact is found to
maintain throughout the punch face as A" ranges from —0.882 to 0.067. For 2* > 0.067, corresponding to a
sufficiently large heat flux into the infinite body from the rigid punch, tensile contact stresses are predicted
near the ends of the rigid stamp. For 1" < —0.882, tensile contact stresses are predicted near the middle
of the rigid stamp which will result in imperfect contact. The nondimensionalized contact stress
omm/ (P/2bsin @) with 2* = —0.5 and 0 is shown in Figs. 3 and 4, respectively which indicates that the stress
singularity is found near the ends of the rigid stamp. Notice that the oscillatory behavior near the ends of

&, (P /2bsing)
i

Fig. 3. The nondimensionalized contact stress o,,,/(p/2bsin¢) along the elliptic hole indented by a rigid stamp with 2~ = —0.5.
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2 —

O /(P 2bsin )
f—

Fig. 4. The nondimensionalized contact stress a,,,/(p/2bsin @) along the elliptic hole indented by a rigid stamp with 2* = 0.

the rigid stamp cannot be seen from these figures since the oscillatory zone is extremely small as discussed in
the last paragraph.

6.2. A partially reinforced elliptic hole under remote heat flow

As a second example, we consider an infinite body containing an elliptic hole with a partially reinforced
segment ¢ = 30° under a remote uniform heat flow (see Fig. 2). The material properties used in this ex-
ample are listed in Eq. (6.1). With this specification, the stress function ¢({) can be obtained from Eq. (3.4)
with the help of substituting Egs. (5.3)—(5.6) into Eq. (3.28). Since the transformation function is single-
valued along the elliptic hole boundary, the exact solution of the radial stress g,,,k11/0290G12a along the
reinforced segment can be found by applying Eq. (6.2). The results shown in Fig. 5 (y, = 0°) and Fig. 6
(7o = 30°) reveal that the stress becomes unbounded at the ends of the reinforced portion. The oscillatory
behavior at the ends of the reinforced portion cannot be seen from Fig. 5 or Fig. 6 since the oscillatory zone
at such locations is extremely small.

7. Conclusions

A general solution for the mixed boundary-value problems of two-dimensional anisotropic thermo-
elasticity is obtained by employing the Stroh formalism, the method of analytical continuation, and the
technique of mapping an elliptic curve to a unit circle. Through these general solutions, two typical ex-
amples are fully discussed. Because the transformation function used in our solutions is always single-
valued, we can obtain the exact solutions in the derivations. Notice that the solution derived in Sections 4
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Fig. 5. The nondimensionalized radial stress o,.,k11/022q0G12a along the reinforced segment with 7, = 0°.
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Fig. 6. The nondimensionalized radial stress g,,,k11/022¢0Gi2a along the reinforced segment with y, = 30°.

and 5 are valid for the entire full field only when a replacement of (., {;,{,, {5 should be made for each
component function to calculate the displacement and stress from Egs. (2.8) and (2.9). This observation,
which was pointed out by Suo (1990), makes the analytic function continuation possible. The mixed
boundary-value problems associated with a point heat source can also be derived in a similar fashion by
choosing the proper expression of H(z,) in Eq. (3.37) such that the existence of single-valued displacements
in the entire system is guaranteed.
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Appendix A

The external applied force p can be expressed as

f»:/Ltmdnz—/L%[@’(ﬁ)_@'(f)] dn:/wdc7

L o

= LA<<1 +e*2““«>>/ (o) / L[F(:)}"A—‘lem[(c — AB'd)1g/(t)] dtde

2mi ., O ,t—o0o

+ _ —
+A/ =)0 do (A1)
L g
By changing the order of integration, the integral term in Eq. (A.1) can be rewritten as
+
/ (0] {2A"MIm|[(c — AB 'd)zg'(r)] } / (o) dodt (A.2)

L L o(t—o)

which is in fact zero since the integral term [, (I'"(0)/0(t — ¢)) do is found to vanish. Thus, Eq. (A.1) can be
reduced to

f)/Ltmdn/LMdaA/L wp(g)dg (A.3)

g g

The integral terms in Eq. (A.3) can be expressed as

j{%dé/wda+/md6+/%dz+/ %dl

¢ w ¢ ¢
:/L@da—z%da—&—/c()%d“—/%%dézo (A4)
d
"o oo al [T [T [ TR0,
Aj{ sl {/ . +/q - +/CO s
. / rn )
o /xr<a+>p<a> o [ TR gy [ TOHD

where the integration contour is shown in Fig. 7. On substitution of Egs. (A.4) and (A.5) into Eq. (A.3) we
have the following relations

Q) . _ s [ TORQ
/C()ng_A/CO e (A.6)

and

o0 .. 14(9) J(9)
/Cx Spde= A/Cm e (A.7)
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Fig. 7. The integration contour for Egs. (A.4) and (A.5).

Once the conditions of @'({) and I'({) at infinity and at the origin are given, the coefficients in p({) can be
determined by solving Egs. (A.6) and (A.7) in a straightforward manner.
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